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Degasperis–Procesi and Ostrovsky–Vakhnenko
equations

Degasperis–Procesi (DP):

ut − utxx + 3κux + 4uux = 3uxuxx + uuxxx

Ostrovsky–Vakhnenko (OV):

utxx − 3κux + 3uxuxx + uuxxx = 0

Cauchy problem:

u(x, 0) = u0(x), x ∈ (−∞,∞),

where u0(x) is smooth and decays sufficiently fast as |x| → ∞,
and

u0(x)− u0xx(x) + κ > 0 for all x
−u0xx(x) + κ > 0

Then u(x, t) exists globally and ux(x, t)− uxx(x, t) + κ > 0
(−uxx(x, t) + κ > 0) for all (x, t)).
In what follows: κ > 0.
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Shallow water wave models

result from approximations to “full” equations (Euler,
Green–Naghdi) governing the motion of inviscid fluid
whose surface can exhibit gravity wave propagation

small parameters: ε =
a
h

, µ =
h2

λ2 , where

• a is the typical amplitude
• h is the mean depth
• λ is the typical wavelength

. shallow water scaling: µ << 1 weakly dispersive

. long-wave: ε << 1 weakly nonlinear
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Integrable models in the shallow water theory

long-wave regime: µ << 1, ε = O(µ); balance between
nonlinearity and dispersion

ut + ux + uux + uxxx = 0 (KdV)

“Camassa–Holm scaling”: µ << 1, ε = O(
√
µ); more

nonlinear than dispersive; can allow breaking waves.
From “b-family”

ut − utxx + κux + (b + 1)uux = buxuxx + uuxxx

integrable (possessing the Lax pair) are:
b = 2: Camassa–Holm equation (1993) (also Fokas,
Fuchssteiner, 1981)
b = 3: Degasperis–Procesi equation (1999)
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Camassa-Holm equation (CH)

ut − utxx + 2κux + 3uux = 2uxuxx + uuxxx

κ > 0 is related to the critical wave speed
√

gh0; supports
smooth solitary waves (like for KdV)
κ = 0: supports peakons c · e−|x−ct|

waves in hyperelastic rods (Dai, 1998)
geodesic flow on diffeomorphism group of the line (Misiolek,
1998)

Degasperis–Procesi equation (DP)

ut − utxx + 3κux + 4uux = 3uxuxx + uuxxx

Solutions on zero background (spatially decaying):
κ > 0 smooth solitary waves
κ = 0: peakons
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Short wave limit: ε→ 0

x′ =
x
ε
, t′ = tε, u′ =

u
ε2

CH (κ = 0) 7−→ (ut + uux)xx = uxuxx

Hunter-Saxton equation: nematic liquid crystals

CH (κ > 0) 7−→ utxx − 2κux + 2uxuxx + uuxxx = 0
“modified Hunter-Saxton equation”: short capillary waves

DP (κ = 0) 7−→ (ut + uux)xx = 0
derivative Burgers equation

DP (κ > 0) 7−→ utxx − 3κux + 3uxuxx + uuxxx = 0
Ostrovsky–Vakhnenko equation
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OV equation: various physics and many names

Whitham (1974) ut + uux +
∫∞
−∞ K(x− y)uydy = 0 (wave

equations with breaking & peaking), with K(x− y) = 1
2 |x− y|

“Vakhnenko equation” (1991): high-frequency waves in a
relaxing medium. (ut + uux)x + u = 0. Name proposed by
J.Parkes, 1993.
“reduced Ostrovsky equation” (1978): weakly nonlinear
surface and internal waves in a rotating ocean influenced
by Earth rotation. (ut + c0ux + αuux + βuxxx)x = γu (β = 0)
“Rotation-Modified KdV equation” (RMKdV);
“Ostrovsky–Hunter” equation (Hunter (1990): canonical
asymptotic equation for genuinely nonlinear waves that are
non-dispersive as their wavelength tends to zero).
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Short wave (sw-) limits: integrable as well as their counterparts
(possess Lax pair representation).

CH and sw-CH: spatial equation in the Lax pair is of
second order
DP and sw-DP (OV): spatial equation in the Lax pair is of
third order

Accordingly, in the application of the inverse scattering method,
in the form of the matrix-valued Riemann–Hilbert problem,

CH and sw-CH: 2× 2 Riemann–Hilbert problem

CH: [Constantin, 2001], [Constantin,Lenells, 2003], [Boutet de
Monvel, Sh., 2006,...], [Constantin, Gerdjikov, Ivanov, 2006],
[Boutet de Monvel, Kostenko, Sh., Teschl, 2010]

DP and OV: 3× 3 Riemann–Hilbert problem

DP: [Constantin, Ivanov, Lenells, 2010],
[Boutet de Monvel, Sh., 2012]
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Objective: development of the RHP method for the initial-value
problem, in view of studying the long-time asymptotics.

Implementation in the case of short wave limits:
share some common features with “original” equations
have specific features, both in the realization and in the
asymptotic results

In this talk: DP versus OV
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DP (κ = 1) on (−∞,∞) with fast decaying initial data

Let u(x, t) be the solution of the initial-value problem
for the Degasperis-Procesi equation (for κ = 1):

ut − utxx + 3ux + 4uux = 3uxuxx + uuxxx

u(x, 0) = u0(x)

Let m(x, t) := u(x, t)− uxx(x, t).
Assumptions:

u0(x)→ 0 as |x| → ∞
m(x, 0) + 1 > 0 for all x ∈ R (then m(x, t) + 1 > 0 for all x, t)

Question
How does u(x, t) behave for large t ?

Answer
four sectors in the (x, t) half-plane where u(x, t) behaves
differently for large t, depending on the magnitude of ζ = x

t

transition zones (Painlevé)
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DP: long-time asymptotics

•
0

ζ = − 3
8

ζ = 3

ζ = 0

(i)

(ii)

(iii)

(iv)

x

t

Four sectors and transition zones in the (x, t)-half-plane, ζ = x
t .

Painlevé zones: (a) |ζ − 3|t2/3 < C; (b)
∣∣ζ + 3

8

∣∣ t2/3 < C
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DP: long-time asymptotics

Sector (i): u(x, t) looks like a finite train of solitons
Sector (ii): u(x, t) looks like a slowly decaying modulated

oscillation
u(x, t) =

c1√
t
· sin (c2t + c3 log t + c4) + o

( 1√
t

)
. cj = cj(ζ; scatt.data), ζ = x/t

Sector (iii): u(x, t) ∼ the sum of two decaying modulated
oscillations

Sector (iv): u(x, t) is fast decaying

transitions: in terms of solutions of Painlevé II equation

v′′(s) = sv(s) + 2v3(s)
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OV (κ = 1) on (−∞,∞) with decaying initial data

utxx − 3ux + 3uxuxx + uuxxx = 0

u(x, 0) = u0(x)

Let m(x, t) := −uxx(x, t).
Assumptions:

u0(x)→ 0 as |x| → ∞
m(x, 0) + 1 > 0 for all x ∈ R (then m(x, t) + 1 > 0 for all x, t)

Long time behavior of u(x, t)

x > 0: fast decay (no smooth solitons)
x < 0: decaying (as t−1/2) modulated oscillations
transition: via fast decay
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OV: long time asymptotics
For x < 0:

u(x, t) =
c1√

t
· sin (c2t + c3 log t + c4) + o

( 1√
t

)
where cj = cj(ξ) with ξ =

√
t
|x| :

c1 = −2
3
2 3

1
4

√
h
ξ3 sin

(
arg r(ξ)−arg r(−ξ)

2 − 2π
3

)
c2 = 2

√
3
ξ

c3 = h

c4 = h log 8
√

3
ξ + arg r(ξ)+arg r(−ξ)

2 + arg Γ(−ih) + π
4 +

3ξ
π

∫∞
ξ

log
(

1−|r(s)|2
)

s2 ds + 1
2π

(∫ −ξ
−∞+

∫∞
ξ

)
log(1−|r(s)|2)(2s+ξ)

s2+sξ+ξ2 ds +

1
π

(∫ −ξ
−∞+

∫∞
ξ

)
log|ξ − s| d log(1− |r(s)|2)

with h = h(ξ) = − 1
2π log(1− |r(ξ)|2).

r(ξ) is the reflection coefficient corresponding to u0(x) (spatial
Lax equation)

transition: ξ →∞ and h(ξ)→ 0 as x/t ↑ 0 14 / 33



Method
Lax pair:

Ψx −Ψxxx = −η(m + 1)Ψ (DP) −Ψxxx = −η(m + 1)Ψ (OV)

Ψt =
1
η

Ψxx − uΨx +

(
ux −

c
ην

)
Ψ

DP: m = u− uxx, ν = 1 OV: m = −uxx, ν = 0

Inverse scattering transform method in the RHP form

using
. the Lax pair associated to the DP (OV) equation

construct
. a multiplicative matrix Riemann-Hilbert problem (RHP)

obtain
. a representation of the solution u(x, t) of the DP (OV)

equation in terms of the solution µ(x, t; ·) of the associated
RHP

obtain
. the long-time asymptotics of u(x, t) via the Deift-Zhou

nonlinear steepest descent method. 15 / 33



Specific features of RHP for DP and OV

• In order to control analytic properties of eigenfunctions
w.r.t. the spectral parameter: two versions of the Lax
pair:
. for large η
. for η near 0

• Solution u(x, t) of the DP (OV) equation: from the
evaluation of the solution of the RH problem
for η near 0

• Dependence on u of the exponential factor in the RH
problem: requires introducing auxiliary scale, which
leads to implicit (parametric) formulas for u(x, t) (even
for pure soliton solutions)
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Martix (3× 3) form of the Lax pair

Φx = UΦ, Φt = VΦ

U =

(
0 1 0
0 0 1
ηq3 1 0

)
V =

(
ux− c

η −u 1
η

u+1 − c−1
η −u

ux−ηuq3 1 −ux− c−1
η

)
(DP)

U =

(
0 1 0
0 0 1
ηq3 0 0

)
V =

(
ux−c −u 1

η

1 −c −u
−ηuq3 1 −ux−c

)
(OV)

with q = 3
√

m + 1
To control large-η behavior of eigenfunctions, diagonalize
U∞ = U||x|=∞ and V∞ = V||x|=∞:

P−1(η)U∞(η)P(η) = Λ(η) ≡ diag{λ1(η), λ2(η), λ3(η)}
DP: λ3

j − λj = η OV: λ3
j = η

This dictates introducing a new spectral parameter k, differently for
DP and for OV:

DP: η = 1
3
√

3

(
k3 + k−3

)
; λj(k) = 1√

3

(
ωjk + ω−jk−1

)
OV: η = k3; λj(k) = ωjk (ω = e

2πi
3 )
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Eigenfunctions for large k, I
Introducing D = diag{q−1, 1, q} and Φ̂ = P−1D−1Φ gives the Lax pair
in the form

Φ̂x − qΛ(k)Φ̂ = ÛΦ̂,

Φ̂t + (uqΛ(k)− A(k))Φ̂ = V̂Φ̂

(A(k) = P−1(k)V∞(k)P(k) is also diagonal), where Û, V̂ are o(1) as
|x| → ∞ and O(1) as k→∞ (moreover, diag(U), diag(V) are O(1/k)).
This suggests introducing a diagonal Q solving the system

Qx = qΛ(k), Qt = −uqΛ(k) + A(k)

by Q = y(x, t)Λ(k) + tA(k) with y(x, t) = x−
∫∞

x (q(ξ, t)− 1) dξ, and the
system of integral equations for entries of M := Φ̂e−Q:

Mjl(x, t, k) = Ejl +

∫ x

∞j,l

e−λj(k)
∫ ξ

x q(ζ,t) dζ [(ÛM)jl(ξ, t, k)
]

eλl(k)
∫ ξ

x q(ζ,t) dζ dξ,

where E is 3× 3 identity matrix and

∞jl =

{
+∞, if Reλj(k) ≥ Reλl(k),

−∞, if Reλj(k) < Reλl(k).
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Eigenfunctions for large k, II

Propositon

Assume that u solves IVP for DP (OV). Then

M, as function of k, is piecewise meromorphic w.r.t.
Σ = R ∪ ωR ∪ ω2R

M(x, t, k)→ E as k→∞
M+(x, t, k) = M−(x, t, k)eQ(x,t,k)S0(k)e−Q(x,t,k) for k ∈ Σ

Here S0(k) has only 2× 2 nontrivial blocks:

S0(k) =

 1 r(k) 0
−r(k) 1− |r(k)|2 0

0 0 1

 for k ∈ R

whereas the structure of Sk on ωR and ω2R follows from the symmetry
S0(kω) = C−1S0(k)C with C =

(
0 0 1
1 0 0
0 1 0

)
.
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Eigenfunctions for k near e
iπ
6 (DP) or near 0 (OV)

The behavior of M at these points is controlled by another version of
the Lax pair. Introducing Φ̂(0) = P−1Φ leads to the Lax pair in the form

Φ̂(0)
x − Λ(k)Φ̂(0) = Û(0)Φ̂(0),

Φ̂
(0)
t − A(k)Φ̂(0) = V̂(0)Φ̂(0),

where Û(0)(x, t, k∗) ≡ 0 with k∗ = e
iπ
6 (DP) or k∗ = 0 (OV). This leads

to the representation

M(x, t, k) = P−1(k)D−1(x, t)P(k)M(0)(x, t, k)e(x−y(x,t))Λ(k)

with P =

(
1 1 1
λ1 λ2 λ3

λ2
1 λ

2
2 λ

2
3

)
, where M(0) = Φ̂(0)e−xΛ−tA is determined by

similar integral equations; particularly, M(0)(·, ·, k∗) ≡ E. Moreover, in
the case of OV,

M(0)(x, t, k) = E − 1
3

ux

( ω ω ω
ω2 ω2 ω2

1 1 1

)
k + O(k2), k→ 0.
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Observations:

the dependence of the jump matrix on (x, t): implicit (Q
involves u(x, t))

S(x, t; k) = eQ(x,t,k)S0(k)e−Q(x,t,k), Q = y(x, t)Λ(k) + tA(k)

with y(x, t) = x−
∫∞

x (q(ξ, t)− 1) dξ and

A(k) =

{√
3(k3 + k−3)−1E + Λ−1(k), (DP)

Λ−1(k), (OV)

but becomes explicit when switching to (y, t):
Q = yΛ(k) + tA(k)

a well-controlled behavior of M at k = k∗ allows extracting
u(x, t) from M(x, t, k)
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Solution of DP and OV via RH problem

Vector Riemann-Hilbert problem

Given S0(k), k ∈ Σ, find piecewise meromorphic vector µ(y, t, k) (1× 3)
s.t.

µ+(y, t, k) = µ−(y, t, k)S(y, t, k), k ∈ Σ, with

S(y, t, k) = eyΛ(k)+tA(k)S0(k)e−yΛ(k)−tA(k)

µ(y, t, k) =
(
1 1 1

)
+ o(1) as k→∞

residue conditions (if any)

Then u(x, t) can be obtained, in a parametric form, by
u(x, t) = û(y(x, t), t), where

1 û(y, t) = ∂x(y,t)
∂t

2 x(y, t) is given by

for DP: x(y, t) = y + log µj+1

µj
(y, t, e

iπ
6 ), j = 1 or 2

for OV: x(y, t) = y + limk→0

(
µ3(y,t,k)
µ3(y,t,0) − 1

)
1
k
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Asymptotics: exponentials in jump matrix

Exponential factor in the jump matrix for RH problem dictates
the contour deformations: let ζ =

y
t
; then for k ∈ R

DP: S12(y, t, k) = r̄(k)e−3itΘ( 2
3 ζ,k̃(k)) with

Θ(ζ, k̃) = ζk − 2k̃
1 + 4k̃2

(as for CH), k̃(k) =
1
2

(
1
k
− k
)

OV: S12(y, t, k) = r̄(k)e−2itΘ(ζ,k) with

Θ(ζ, k) = −
√

3
2

(
ζk − 1

k

)
(as for sw-CH)
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Asymptotics: signature table for DP, I

Sign of Im Θ(ζ, k) for various ζ; k near R

− −
+ +

− −
+ +

+ +

− −
•• •
0−1 1

ζ = 3

−

+

+

−

+

−

−

+

−

+
• •••

p0 1
p0

−p0− 1
p0

0 < ζ < 3
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Asymptotics: signature table for DP, II

1
p0

1
p1

p0
p1

+
−

+
−

+
−

−
+

−
+

+
−

+
− • • • •••••

−

+

+

−
+

−
+

−
+

−
+

− •0

−3
8 < ζ < 0 ζ = − 3

8
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Asymptotics: signature table for DP, III

0−2 2

1

−1

2

−2

•

•

•

•

•

••

+ +

− −

+ +

− −

−−

++
0
•

+ +

− −

+ +

− −

−−

++

−1 < ζ < − 3
8 −1 < ζ < −3

8
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Asymptotics: signature table for DP, IV

Sign of Im Θ(ζ, k) for k near each part (line) of Σ, 0 < ζ < 3

p0 1
p0

−p0− 1
p0

• •••
+ +

− −

− −

+ +

− −

+ +

− −

+ +

+ +

− −

−
+

−
+

+
−

+
−

27 / 33



Deformation of RH problem for DP, 0 < ζ < 3
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Signature table and contour deformation for OV

_

+ +

+

+

+ _

_ _|!"-1/2

ζ > 0 ζ < 0

Contour deformations:
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Solitons

Introducing residue conditions in the RH problem

Resk=kn µl(y, t, k) = µj(y, t, kn)vjl
ney(λj(k)−λl(k))+t(Aj(k)−Al(k))

leads to soliton solutions.

DP: e... = e
g
(

y− 3t
1−g2

)
, g = λj(k)− λl(k).

With g real and |g| < 1, one obtains smooth solitons in
parametric form, with velocities > 3 (similarly to CH)
OV: no smooth, real solitons (conjecture).
But: forcing residue conditions and requiring the solution to
be real and bounded leads to solutions which are smooth
in the (y, t) scale but multivalued in the original (x, t)
variables.
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OV: loop solitons, I

One-soliton: due to symmetries, residue conditions are at
k = ρe

iπ
6 + iπm

3 , m = 0, . . . , 5 with ρ > 0:

Resk=−iρ µ1(y, t, k) = µ2(y, t, iρ)γe−
√

3ρy−
√

3
ρ

t

with γ ≡ |γ|e iπ
3 (residue conditions at other points follow by

symmetries).
1-loop soliton: u(x, t) = û(y(x, t), t)

x(y, t) = y + 2
√

3
ρ

ê
1+ê

û(y, t) = − 6
ρ2

ê
(1+ê)2

where ê(y, t) = e
−
√

3ρ(y+ t
ρ2 +y0), y0 = − 1√

3ρ
log |γ|

2
√

3ρ
.
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OV: loop solitons, II

Soliton in (y, t) Soliton in (x, t)
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