The Degasperis-Procesi equation and its short-wave limit by a Riemann-Hilbert approach

Dmitry Shepelsky

Institute for Low Temperature Physics, Kharkiv, Ukraine

International Workshop on integrable Systems - Mathematical Analysis and Scientific Computing, Taipei, October 17-21, 2015

Degasperis-Procesi and Ostrovsky-Vakhnenko equations

- Degasperis-Procesi (DP):

$$
u_{t}-u_{t x x}+3 \varkappa u_{x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x}
$$

- Ostrovsky-Vakhnenko (OV):

$$
u_{t x x}-3 \varkappa u_{x}+3 u_{x} u_{x x}+u u_{x x x}=0
$$

Cauchy problem:

$$
u(x, 0)=u_{0}(x), \quad x \in(-\infty, \infty)
$$

where $u_{0}(x)$ is smooth and decays sufficiently fast as $|x| \rightarrow \infty$, and

- $u_{0}(x)-u_{0 x x}(x)+\varkappa>0$ for all x
- $-u_{0 x x}(x)+\varkappa>0$

Then $u(x, t)$ exists globally and $u_{x}(x, t)-u_{x x}(x, t)+\varkappa>0$
$\left(-u_{x x}(x, t)+\varkappa>0\right)$ for all $\left.(x, t)\right)$.
In what follows: $\quad \varkappa>0$.

Shallow water wave models

- result from approximations to "full" equations (Euler, Green-Naghdi) governing the motion of inviscid fluid whose surface can exhibit gravity wave propagation
- small parameters: $\varepsilon=\frac{a}{h}, \mu=\frac{h^{2}}{\lambda^{2}}$, where
- a is the typical amplitude
- h is the mean depth
- λ is the typical wavelength
\triangleright shallow water scaling: $\mu \ll 1$ weakly dispersive
\triangleright long-wave: $\varepsilon \ll 1$ weakly nonlinear

Integrable models in the shallow water theory

- long-wave regime: $\mu \ll 1, \varepsilon=\mathrm{O}(\mu)$; balance between nonlinearity and dispersion

$$
u_{t}+u_{x}+u u_{x}+u_{x x x}=0 \quad(\mathrm{KdV})
$$

- "Camassa-Holm scaling": $\mu \ll 1, \varepsilon=\mathrm{O}(\sqrt{\mu})$; more nonlinear than dispersive; can allow breaking waves. From " b-family"

$$
u_{t}-u_{t x x}+\varkappa u_{x}+(b+1) u u_{x}=b u_{x} u_{x x}+u u_{x x x}
$$

integrable (possessing the Lax pair) are:

- $b=2$: Camassa-Holm equation (1993) (also Fokas, Fuchssteiner, 1981)
- $b=3$: Degasperis-Procesi equation (1999)
- Camassa-Holm equation (CH)

$$
u_{t}-u_{t x x}+2 \varkappa u_{x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

- $\varkappa>0$ is related to the critical wave speed $\sqrt{g h_{0}}$; supports smooth solitary waves (like for KdV)
- $\varkappa=0$: supports peakons $c \cdot e^{-|x-c t|}$
- waves in hyperelastic rods (Dai, 1998)
- geodesic flow on diffeomorphism group of the line (Misiolek, 1998)
- Degasperis-Procesi equation (DP)

$$
u_{t}-u_{t x x}+3 \varkappa u_{x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x}
$$

Solutions on zero background (spatially decaying):

- $\varkappa>0$ smooth solitary waves
- $\varkappa=0$: peakons

Short wave limit: $\varepsilon \rightarrow 0$

$$
x^{\prime}=\frac{x}{\varepsilon}, \quad t^{\prime}=t \varepsilon, \quad u^{\prime}=\frac{u}{\varepsilon^{2}}
$$

- $\mathrm{CH}(\varkappa=0) \quad \longmapsto \quad\left(u_{t}+u u_{x}\right)_{x x}=u_{x} u_{x x}$

Hunter-Saxton equation: nematic liquid crystals

- $\mathrm{CH}(\varkappa>0) \longmapsto u_{t x x}-2 \varkappa u_{x}+2 u_{x} u_{x x}+u u_{x x x}=0$ "modified Hunter-Saxton equation": short capillary waves
- DP $(\varkappa=0) \quad \longmapsto \quad\left(u_{t}+u u_{x}\right)_{x x}=0$ derivative Burgers equation
- DP $(\varkappa>0) \longmapsto \quad u_{t x x}-3 \varkappa u_{x}+3 u_{x} u_{x x}+u u_{x x x}=0$

Ostrovsky-Vakhnenko equation

OV equation: various physics and many names

- Whitham (1974) $u_{t}+u u_{x}+\int_{-\infty}^{\infty} K(x-y) u_{y} d y=0$ (wave equations with breaking \& peaking), with $K(x-y)=\frac{1}{2}|x-y|$
- "Vakhnenko equation" (1991): high-frequency waves in a relaxing medium. $\left(u_{t}+u u_{x}\right)_{x}+u=0$. Name proposed by J.Parkes, 1993.
- "reduced Ostrovsky equation" (1978): weakly nonlinear surface and internal waves in a rotating ocean influenced by Earth rotation. $\left(u_{t}+c_{0} u_{x}+\alpha u u_{x}+\beta u_{x x x}\right)_{x}=\gamma u(\beta=0)$
- "Rotation-Modified KdV equation" (RMKdV); "Ostrovsky-Hunter" equation (Hunter (1990): canonical asymptotic equation for genuinely nonlinear waves that are non-dispersive as their wavelength tends to zero).

Short wave (sw-) limits: integrable as well as their counterparts (possess Lax pair representation).

- CH and sw-CH: spatial equation in the Lax pair is of second order
- DP and sw-DP (OV): spatial equation in the Lax pair is of third order
Accordingly, in the application of the inverse scattering method, in the form of the matrix-valued Riemann-Hilbert problem,
- CH and sw-CH: 2×2 Riemann-Hilbert problem

CH: [Constantin, 2001], [Constantin,Lenells, 2003], [Boutet de Monvel, Sh., 2006,...], [Constantin, Gerdjikov, Ivanov, 2006], [Boutet de Monvel, Kostenko, Sh., Teschl, 2010]

- DP and OV: 3×3 Riemann-Hilbert problem

DP: [Constantin, Ivanov, Lenells, 2010],
[Boutet de Monvel, Sh., 2012]

Objective: development of the RHP method for the initial-value problem, in view of studying the long-time asymptotics.

Implementation in the case of short wave limits:

- share some common features with "original" equations
- have specific features, both in the realization and in the asymptotic results

In this talk: DP versus OV

DP $(\varkappa=1)$ on $(-\infty, \infty)$ with fast decaying initial data

Let $u(x, t)$ be the solution of the initial-value problem for the Degasperis-Procesi equation (for $\varkappa=1$):

- $u_{t}-u_{t x x}+3 u_{x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x}$
- $u(x, 0)=u_{0}(x)$

Let $m(x, t):=u(x, t)-u_{x x}(x, t)$.
Assumptions:

- $u_{0}(x) \rightarrow 0$ as $|x| \rightarrow \infty$
- $m(x, 0)+1>0$ for all $x \in \mathbb{R}$ (then $m(x, t)+1>0$ for all $x, t)$

Question

How does $u(x, t)$ behave for large t ?

Answer

- four sectors in the (x, t) half-plane where $u(x, t)$ behaves differently for large t, depending on the magnitude of $\zeta=\frac{x}{t}$
- transition zones (Painlevé)

DP: long-time asymptotics

Four sectors and transition zones in the (x, t)-half-plane, $\zeta=\frac{x}{t}$.
Painlevé zones: (a) $|\zeta-3| t^{2 / 3}<C$; (b) $\left|\zeta+\frac{3}{8}\right| t^{2 / 3}<C$

DP: long-time asymptotics

Sector (i): $u(x, t)$ looks like a finite train of solitons
Sector (ii): $u(x, t)$ looks like a slowly decaying modulated oscillation

$$
\begin{aligned}
& u(x, t)=\frac{c_{1}}{\sqrt{t}} \cdot \sin \left(c_{2} t+c_{3} \log t+c_{4}\right)+\mathrm{o}\left(\frac{1}{\sqrt{t}}\right) \\
& \quad \triangleright c_{j}=c_{j}(\zeta ; \text { scatt.data }), \zeta=x / t
\end{aligned}
$$

Sector (iii): $u(x, t) \sim$ the sum of two decaying modulated oscillations
Sector (iv): $u(x, t)$ is fast decaying

- transitions: in terms of solutions of Painlevé II equation

$$
v^{\prime \prime}(s)=s v(s)+2 v^{3}(s)
$$

OV $(\varkappa=1)$ on $(-\infty, \infty)$ with decaying initial data

- $u_{t x x}-3 u_{x}+3 u_{x} u_{x x}+u u_{x x x}=0$
- $u(x, 0)=u_{0}(x)$

Let $m(x, t):=-u_{x x}(x, t)$.
Assumptions:

- $u_{0}(x) \rightarrow 0$ as $|x| \rightarrow \infty$
- $m(x, 0)+1>0$ for all $x \in \mathbb{R}$ (then $m(x, t)+1>0$ for all $x, t)$

Long time behavior of $u(x, t)$

- $x>0$: fast decay (no smooth solitons)
- $x<0$: decaying (as $t^{-1 / 2}$) modulated oscillations
- transition: via fast decay

OV: long time asymptotics

For $x<0$:

$$
u(x, t)=\frac{c_{1}}{\sqrt{t}} \cdot \sin \left(c_{2} t+c_{3} \log t+c_{4}\right)+\mathrm{o}\left(\frac{1}{\sqrt{t}}\right)
$$

where $c_{j}=c_{j}(\xi)$ with $\xi=\sqrt{\frac{t}{|x|}}$:

- $c_{1}=-2^{\frac{3}{2}} 3^{\frac{1}{4}} \sqrt{\frac{h}{\xi^{3}}} \sin \left(\frac{\arg r(\xi)-\arg r(-\xi)}{2}-\frac{2 \pi}{3}\right)$
- $c_{2}=\frac{2 \sqrt{3}}{\xi}$
- $c_{3}=h$
- $c_{4}=h \log \frac{8 \sqrt{3}}{\xi}+\frac{\arg r(\xi)+\arg r(-\xi)}{2}+\arg \Gamma(-\mathrm{i} h)+\frac{\pi}{4}+$

$$
\begin{aligned}
& \frac{3 \xi}{\pi} \int_{\xi}^{\infty} \frac{\log \left(1-|r(s)|^{2}\right)}{s^{2}} \mathrm{~d} s+\frac{1}{2 \pi}\left(\int_{-\infty}^{-\xi}+\int_{\xi}^{\infty}\right) \frac{\log \left(1-|r(s)|^{2}\right)(2 s+\xi)}{s^{2}+s \xi+\xi^{2}} \mathrm{~d} s+ \\
& \frac{1}{\pi}\left(\int_{-\infty}^{-\xi}+\int_{\xi}^{\infty}\right) \log |\xi-s| \mathrm{d} \log \left(1-|r(s)|^{2}\right)
\end{aligned}
$$

with $h=h(\xi)=-\frac{1}{2 \pi} \log \left(1-|r(\xi)|^{2}\right)$.

- $r(\xi)$ is the reflection coefficient corresponding to $u_{0}(x)$ (spatial Lax equation)
- transition: $\xi \rightarrow \infty$ and $h(\xi) \rightarrow 0$ as $x / t \uparrow 0$

Method

Lax pair:

$$
\begin{aligned}
& \Psi_{x}-\Psi_{x x x}=-\eta(m+1) \Psi(\mathrm{DP}) \quad-\Psi_{x x x}=-\eta(m+1) \Psi(\mathrm{OV}) \\
& \Psi_{t}=\frac{1}{\eta} \Psi_{x x}-u \Psi_{x}+\left(u_{x}-\frac{c}{\eta^{\nu}}\right) \Psi \\
& \text { DP: } m=u-u_{x x}, \nu=1 \quad \text { OV: } m=-u_{x x}, \nu=0
\end{aligned}
$$

Inverse scattering transform method in the RHP form

- using
\triangleright the Lax pair associated to the DP (OV) equation
- construct
\triangleright a multiplicative matrix Riemann-Hilbert problem (RHP)
- obtain
\triangleright a representation of the solution $u(x, t)$ of the DP (OV) equation in terms of the solution $\mu(x, t ; \cdot)$ of the associated RHP
- obtain
\triangleright the long-time asymptotics of $u(x, t)$ via the Deift-Zhou nonlinear steepest descent method.
- In order to control analytic properties of eigenfunctions w.r.t. the spectral parameter: two versions of the Lax pair:
\triangleright for large η
\triangleright for η near 0
- Solution $u(x, t)$ of the DP (OV) equation: from the evaluation of the solution of the RH problem for η near 0
- Dependence on u of the exponential factor in the RH problem: requires introducing auxiliary scale, which leads to implicit (parametric) formulas for $u(x, t)$ (even for pure soliton solutions)

Martix (3×3) form of the Lax pair

$$
\begin{gather*}
\Phi_{x}=U \Phi, \quad \Phi_{t}=V \Phi \\
U=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\eta q^{3} & 1 & 0
\end{array}\right) \quad V=\left(\begin{array}{ccc}
u_{x}-\frac{c}{\eta} & -u & \frac{1}{\eta} \\
u+1 & -\frac{c-1}{\eta} & -u \\
u_{x}-\eta u q^{3} & 1 & -u_{x}-\frac{c-1}{\eta}
\end{array}\right) \tag{DP}\\
U=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\eta q^{3} & 0 & 0
\end{array}\right) \quad V=\left(\begin{array}{ccc}
u_{x}-c & -u & \frac{1}{\eta} \\
1 & -c & -u \\
-\eta u q^{3} & 1 & -u_{x}-c
\end{array}\right)
\end{gather*}
$$

with $q=\sqrt[3]{m+1}$
To control large- η behavior of eigenfunctions, diagonalize
$U_{\infty}=\left.U\right|_{|x|=\infty}$ and $V_{\infty}=\left.V\right|_{|x|=\infty}$:

$$
\begin{gathered}
P^{-1}(\eta) U_{\infty}(\eta) P(\eta)=\Lambda(\eta) \equiv \operatorname{diag}\left\{\lambda_{1}(\eta), \lambda_{2}(\eta), \lambda_{3}(\eta)\right\} \\
\text { DP: } \lambda_{j}^{3}-\lambda_{j}=\eta \quad \text { OV: } \lambda_{j}^{3}=\eta
\end{gathered}
$$

This dictates introducing a new spectral parameter k, differently for DP and for OV:

- DP: $\eta=\frac{1}{3 \sqrt{3}}\left(k^{3}+k^{-3}\right) ; \quad \lambda_{j}(k)=\frac{1}{\sqrt{3}}\left(\omega^{j} k+\omega^{-j} k^{-1}\right)$
- OV: $\eta=k^{3}$;

$$
\lambda_{j}(k)=\omega^{j} k
$$

$$
\left(\omega=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{3}}\right)
$$

Eigenfunctions for large k, I

Introducing $D=\operatorname{diag}\left\{q^{-1}, 1, q\right\}$ and $\hat{\Phi}=P^{-1} D^{-1} \Phi$ gives the Lax pair in the form

$$
\begin{aligned}
& \hat{\Phi}_{x}-q \Lambda(k) \hat{\Phi}=\hat{U} \hat{\Phi}, \\
& \hat{\Phi}_{t}+(u q \Lambda(k)-A(k)) \hat{\Phi}=\hat{V} \hat{\Phi}
\end{aligned}
$$

$\left(A(k)=P^{-1}(k) V_{\infty}(k) P(k)\right.$ is also diagonal), where \hat{U}, \hat{V} are $o(1)$ as $|x| \rightarrow \infty$ and $O(1)$ as $k \rightarrow \infty$ (moreover, $\operatorname{diag}(U), \operatorname{diag}(V)$ are $O(1 / k))$. This suggests introducing a diagonal Q solving the system

$$
Q_{x}=q \Lambda(k), \quad Q_{t}=-u q \Lambda(k)+A(k)
$$

by $Q=y(x, t) \Lambda(k)+t A(k)$ with $y(x, t)=x-\int_{x}^{\infty}(q(\xi, t)-1) \mathrm{d} \xi$, and the system of integral equations for entries of $M:=\hat{\Phi} \mathrm{e}^{-Q}$:

$$
M_{j l}(x, t, k)=E_{j l}+\int_{\infty_{j, l}}^{x} \mathrm{e}^{-\lambda_{j}(k)} \int_{x}^{\xi} q(\zeta, t) \mathrm{d} \zeta\left[(\hat{U} M)_{j l}(\xi, t, k)\right] \mathrm{e}^{\lambda_{l}(k) \int_{x}^{\xi} q(\zeta, t) \mathrm{d} \zeta} \mathrm{~d} \xi,
$$

where E is 3×3 identity matrix and

$$
\infty_{j l}= \begin{cases}+\infty, & \text { if } \operatorname{Re} \lambda_{j}(k) \geq \operatorname{Re} \lambda_{l}(k) \\ -\infty, & \text { if } \operatorname{Re} \lambda_{j}(k)<\operatorname{Re} \lambda_{l}(k)\end{cases}
$$

Eigenfunctions for large k, II

Propositon

Assume that u solves IVP for DP (OV). Then

- M, as function of k, is piecewise meromorphic w.r.t.
$\Sigma=\mathbb{R} \cup \omega \mathbb{R} \cup \omega^{2} \mathbb{R}$
- $M(x, t, k) \rightarrow E$ as $k \rightarrow \infty$
- $M_{+}(x, t, k)=M_{-}(x, t, k) \mathrm{e}^{Q(x, t, k)} S_{0}(k) \mathrm{e}^{-Q(x, t, k)}$ for $k \in \Sigma$

Here $S_{0}(k)$ has only 2×2 nontrivial blocks:

$$
S_{0}(k)=\left(\begin{array}{ccc}
1 & \overline{r(k)} & 0 \\
-r(k) & 1-|r(k)|^{2} & 0 \\
0 & 0 & 1
\end{array}\right) \text { for } k \in \mathbb{R}
$$

whereas the structure of S_{k} on $\omega \mathbb{R}$ and $\omega^{2} \mathbb{R}$ follows from the symmetry $S_{0}(k \omega)=C^{-1} S_{0}(k) C$ with $C=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

Eigenfunctions for k near $e^{\frac{i \pi}{6}}$ (DP) or near 0 (OV)

The behavior of M at these points is controlled by another version of the Lax pair. Introducing $\hat{\Phi}^{(0)}=P^{-1} \Phi$ leads to the Lax pair in the form

$$
\begin{aligned}
& \hat{\Phi}_{x}^{(0)}-\Lambda(k) \hat{\Phi}^{(0)}=\hat{U}^{(0)} \hat{\Phi}^{(0)}, \\
& \hat{\Phi}_{t}^{(0)}-A(k) \hat{\Phi}^{(0)}=\hat{V}^{(0)} \hat{\Phi}^{(0)},
\end{aligned}
$$

where $\hat{U}^{(0)}\left(x, t, k^{*}\right) \equiv 0$ with $k^{*}=\mathrm{e}^{\frac{\mathrm{i} \pi}{6}}(\mathrm{DP})$ or $k^{*}=0(\mathrm{OV})$. This leads to the representation

$$
M(x, t, k)=P^{-1}(k) D^{-1}(x, t) P(k) M^{(0)}(x, t, k) \mathrm{e}^{(x-y(x, t)) \Lambda(k)}
$$

with $P=\left(\begin{array}{ccc}1 & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}\end{array}\right)$, where $M^{(0)}=\hat{\Phi}^{(0)} \mathrm{e}^{-x \Lambda-t A}$ is determined by similar integral equations; particularly, $M^{(0)}\left(\cdot, \cdot, k^{*}\right) \equiv E$. Moreover, in the case of OV ,

$$
M^{(0)}(x, t, k)=E-\frac{1}{3} u_{x}\left(\begin{array}{ccc}
\omega & \omega & \omega \\
\omega^{2} & \omega^{2} & \omega^{2} \\
1 & 1 & 1
\end{array}\right) k+O\left(k^{2}\right), \quad k \rightarrow 0 .
$$

Observations:

- the dependence of the jump matrix on (x, t) : implicit (Q involves $u(x, t)$)

$$
S(x, t ; k)=\mathrm{e}^{Q(x, t, k)} S_{0}(k) \mathrm{e}^{-Q(x, t, k)}, \quad Q=y(x, t) \Lambda(k)+t A(k)
$$

with $y(x, t)=x-\int_{x}^{\infty}(q(\xi, t)-1) \mathrm{d} \xi$ and

$$
A(k)= \begin{cases}\sqrt{3}\left(k^{3}+k^{-3}\right)^{-1} E+\Lambda^{-1}(k), & (\mathrm{DP}) \\ \Lambda^{-1}(k), & (\mathrm{OV})\end{cases}
$$

but becomes explicit when switching to (y, t) :
$Q=y \Lambda(k)+t A(k)$

- a well-controlled behavior of M at $k=k^{*}$ allows extracting $u(x, t)$ from $M(x, t, k)$

Solution of DP and OV via RH problem

Vector Riemann-Hilbert problem

Given $S_{0}(k), k \in \Sigma$, find piecewise meromorphic vector $\mu(y, t, k)(1 \times 3)$ s.t.

- $\mu_{+}(y, t, k)=\mu_{-}(y, t, k) S(y, t, k), k \in \Sigma$, with

$$
S(y, t, k)=\mathrm{e}^{y \Lambda(k)+t A(k)} S_{0}(k) \mathrm{e}^{-y \Lambda(k)-t A(k)}
$$

- $\mu(y, t, k)=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)+o(1)$ as $k \rightarrow \infty$
- residue conditions (if any)

Then $u(x, t)$ can be obtained, in a parametric form, by $u(x, t)=\hat{u}(y(x, t), t)$, where
(1) $\hat{u}(y, t)=\frac{\partial x(y, t)}{\partial t}$
(2) $x(y, t)$ is given by

- for DP: $x(y, t)=y+\log \frac{\mu_{j+1}}{\mu_{j}}\left(y, t, \mathrm{e}^{\frac{\mathrm{i} \mathrm{\pi}}{6}}\right), j=1$ or 2
- for OV: $x(y, t)=y+\lim _{k \rightarrow 0}\left(\frac{\mu_{3}(y, t, k)}{\mu_{3}(y, t, 0)}-1\right) \frac{1}{k}$

Asymptotics: exponentials in jump matrix

Exponential factor in the jump matrix for RH problem dictates the contour deformations: let $\zeta=\frac{y}{t}$; then for $k \in \mathbb{R}$

- DP: $S_{12}(y, t, k)=\bar{r}(k) \mathrm{e}^{-3 i t \Theta\left(\frac{2}{3} \zeta, \tilde{k}(k)\right)}$ with

$$
\Theta(\zeta, \tilde{k})=\zeta k-\frac{2 \tilde{k}}{1+4 \tilde{k}^{2}}(\text { as for CH }), \quad \tilde{k}(k)=\frac{1}{2}\left(\frac{1}{k}-k\right)
$$

- OV: $S_{12}(y, t, k)=\bar{r}(k) \mathrm{e}^{-2 i t \Theta(\zeta, k)}$ with

$$
\Theta(\zeta, k)=-\frac{\sqrt{3}}{2}\left(\zeta k-\frac{1}{k}\right) \quad \text { (as for sw-CH) }
$$

Asymptotics: signature table for DP, I

Sign of $\operatorname{Im} \Theta(\zeta, k)$ for various $\zeta ; k$ near \mathbb{R}

$$
\zeta=3
$$

$$
0<\zeta<3
$$

Asymptotics: signature table for DP, II

Asymptotics: signature table for DP, III

Asymptotics: signature table for DP, IV

Sign of $\operatorname{Im} \Theta(\zeta, k)$ for k near each part (line) of $\Sigma, 0<\zeta<3$

Deformation of RH problem for DP, $0<\zeta<3$

Signature table and contour deformation for OV

Contour deformations:

Introducing residue conditions in the RH problem

$$
\operatorname{Res}_{k=k_{n}} \mu_{l}(y, t, k)=\mu_{j}\left(y, t, k_{n}\right) v_{n}^{j l} \mathrm{e}^{y\left(\lambda_{j}(k)-\lambda_{l}(k)\right)+t\left(A_{j}(k)-A_{l}(k)\right)}
$$

leads to soliton solutions.

- DP: $\mathrm{e}^{\cdots}=\mathrm{e}^{g\left(y-\frac{3 t}{1-g^{2}}\right)}, g=\lambda_{j}(k)-\lambda_{l}(k)$.

With g real and $|g|<1$, one obtains smooth solitons in parametric form, with velocities > 3 (similarly to CH)

- OV: no smooth, real solitons (conjecture).

But: forcing residue conditions and requiring the solution to be real and bounded leads to solutions which are smooth in the (y, t) scale but multivalued in the original (x, t) variables.

OV: loop solitons, I

One-soliton: due to symmetries, residue conditions are at $k=\rho \mathrm{e}^{\frac{\mathrm{i} \pi}{6}+\frac{\mathrm{i} \pi m}{3}}, m=0, \ldots, 5$ with $\rho>0$:

$$
\operatorname{Res}_{k=-\mathrm{i} \rho} \mu_{1}(y, t, k)=\mu_{2}(y, t, \mathrm{i} \rho) \gamma \mathrm{e}^{-\sqrt{3} \rho y-\frac{\sqrt{3}}{\rho} t}
$$

with $\gamma \equiv|\gamma| \mathrm{e}^{\frac{\mathrm{i} \pi}{3}}$ (residue conditions at other points follow by symmetries).
1-loop soliton: $u(x, t)=\hat{u}(y(x, t), t)$

- $x(y, t)=y+\frac{2 \sqrt{3}}{\rho} \frac{\hat{e}}{1+\hat{e}}$
- $\hat{u}(y, t)=-\frac{6}{\rho^{2}} \frac{\hat{e}}{(1+\hat{e})^{2}}$
where $\hat{e}(y, t)=\mathrm{e}^{-\sqrt{3} \rho\left(y+\frac{t}{\rho^{2}}+y_{0}\right)}, y_{0}=-\frac{1}{\sqrt{3} \rho} \log \frac{|\gamma|}{2 \sqrt{3} \rho}$.

OV: loop solitons, II

Soliton in (y, t)

Soliton in (x, t)
A. Boutet de Monvel and D. Shepelsky.

A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity 26 (2013), 2081-2107
(A. Boutet de Monvel and D. Shepelsky.
The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach,
J. Phys. A: Math. Theor. 48 (2015) 035204

